NASA-TM-111512

Intelligent Validation and Routing of Electronic
Forms in a Distributed Work Flow Environment
MIiCcHAEL COMPTON
SHAWN WOLFE
RECOM TECHNOLOGIES, INC.

ARTIFICIAL INTELLIGENCE RESEARCH BRANCH
NASA AMES RESEaARCH CENTER
MaIL STOP 269-2
MorrETT FIELD, CA 94035-1000

NASA Ames Research Center

Artificial Intelligence Research Branch
Technical Report FIA-93-31

October, 1993

Intelligent Validation and Routing of Electronic Forms in a Distributed
Workflow Environment

Michael M. Compton
compton@ptolemy.arc.nasa.gov; (415) 604-6776

Shawn Wolfe
shawn@ptolemy.arc.nasa.gov; (415) 604-4760

Recom Technologies, Inc.
Artificial Intelligence Research Branch
NASA Ames Research Center, M/S 269-2
Moffett Field, CA 94035-1000

This paper describes a knowledge-based system for improving the efficiency of
automated workflow systems by 1) ensuring the correctness and completeness of
data contained on forms that are originated and transmitted electronically, and 2)
generating an electronic “routing slip” that reflects who must approve the form.
The system uses a form-independent validation engine and form-specific
constraints to check that electronic forms are filled out correctly. If no errors are
detected during validation, the system uses information on the form to generate a
list of individuals and/or organizations that must approve it. This “approval path”
information is added to the form so that it can be automatically routed from one
approver to the next. The system is implemented in CLIPS and currently runs on
Macintosh computers. It communicates with an off-the-shelf electronic forms
package via AppleScript™ and can operate within the Apple Open Collaboration
Environment (AOCE™), which supports a variety of other workflow capabilities
including digital signatures, system-level electronic mail, and data encryption. The
system has successfully validated and generated approval paths for approximately
ten different types of forms, and is easily extended to new forms via a
"BUILDCLASS" facility that automatically generates the CLIPS code necessary to
represent and reason about the new form.

Al Topic: knowledge-based systems

Domain area: electronic forms, workflow automation -

Language/Tool: CLIPS, Informed, AppleScript, AOCE

Status: Initial prototype complete, and being evaluated in the
context of a site-wide workflow application

Effort: Approximately 2 person-years of effort have been
expended to-date

Impact: Elimination of incorrect, incomplete, or incorrectly-routed

forms is estimated to save tens of thousands of dollars per
year in wasted effort.

To be presented at the Tenth IEEE Conference on Artificial Intelligence for Applications (CAIA-94) in San Antoino, TX
in March 1994.

Background
The Ames Acquisition Division processes tens of thousands of purchase requests
(PRs) each year. These PRs, which can be used for anything from procurement of

comouting eauipment and labgratorv_instruments to_allocation _of funds for

&
they can be processed. More than half of these PRs need to be returned to the
originator because they are incorrect or incomplete. Even when the PRs are filled
out correctly, it's often unclear to the originator exactly who needs to approve a
particular PR, and it is likely to be sent on to the wrong person. As a result, even a
properly completed purchase request can take a very long time to get processed.

In 1991, the Artificial Intelligence Research Branch at NASA's Ames Research
Center undertook an effort to determine whether Al technology could be applied to
the validation and routing of an electronic purchase request. With assistance from
the Information Systems Branch and the University Affairs Branch, development
began on the Prototype Electronic Purchase Request (PEPR) system. The initial
application of this system was to the PRs and associated evaluation forms that must
be processed in order to fund external research through university grants. These
types of PRs were chosen because of their relatively simple validation and routing
requirements, and the fact that automation of this process would be of immediate
value to the organizations involved. The system is now being extended to cover
“small purchase” PRs, which require more complicated validation and more
diverse approval paths.

Project Goals
In order to properly evaluate the suitability of knowledge-based technology to the

S B DS . R 5. S . [P DS (. T . . I TS T

Approach

aP Hgto morrial electranic forme packaas.and 2

knowledge based system that contains validation and routing rules that apply to the
forms being supported. These two programs are closely integrated through the use
of a scripting language that enables the two applications to pass data back and forth.
This scripting language not only allows seamless integration of the forms software
and the knowledge-based system, but also allows future inclusion of other
components of a total workflow solution (such as digital signatures and electronic
mail). Figure 1 shows the overall system structure.

~ B

Validation
Module

Classification

Scripting |, Module

Lang Uage Path Generation
Module

Approver "data base"
Utility Routines

Electronic Form Knowledge Base

E-mail
user authentication
digital signatures
form revision management
cross-platform access

N ’ _/

Figure 1 - The Overall Structure of the PEPR System

Electronic Forms Package
Because it is the primary user interface for our system, we wanted the forms
package to
e electronically represent complex forms with high fidelity to the
paper version;
e provide support for arithmetic calculations;

* reauire minimal gystem resources for the forms and the application; and

L A b

- - ——————————————————on

design program, called Informed Designer, allows the forms designer to define the
layout of the form, the appearance and behavior of data fields, and other aspects of
the forms behavior. The “fill application” is called Informed Manager, and allows
end-users to fill out the forms, print them, and/or mail them to other users.
Informed not only meets all of the criteria outlined above, but also has built-in
support for communication with a variety of commercial data bases and permits the
embedding of scripts. Figure 2 shows an example electronic Ames PR form.

ST

* that it be easy to integrate with the other tools (and customize, if
necessary); and
* that it be readily available.

The “C Language Integrated Production System” (CLIPS) best fit our needs for
the project. CLIPS was developed by the Software Technology Branch at NASA’s
Johnson Space Center (and was derived from the forward chaining component of a
very successful commercial expert system shell). The fact that CLIPS comes with its
source code enabled us to extend it to support Apple Events (the inter-program
messaging facility that is built in to the Macintosh operating system with System 7).
We also made CLIPS “scriptable” so that it could be controlled remotely and easily
share data with the forms package.

Integrating the Knowledge Base with the Forms Package

One of the most important goals of our system was that the CLIPS module be as
“seamlessly” integrated with the other modules as possible. That is, we wanted the
knowledge-based system’s operation to be invisible to the user and have its output
(the validation errors and the routing path) displayed to the user on the form itself.

The initial version of our system used a popular “keyboard macro” package to
integrate the electronic forms and the knowledge base. By typing a single keystroke
from within the forms application, the macro would cause the system to export the
form’s data to a disk file, switch to the knowledge system, read in the data from the
exported file, analyze it, and print out the results of the analysis in the CLIPS “dialog
window”. While this approach worked, it had some serious drawbacks. First,
because the keyboard macro simply simulated a user’s input, the user had to watch a
series of dialog boxes and simulated typing and menu commands as the macro
executed. Second, the output of the knowledge based system was not easily returned
to the forms application, and could only be printed out on the screen by CLIPS. Most
importantly, however, was that integration by means of the keyboard macro package
required that both applications be running on the user’s computer. This meant that
to actually put the system in front of real users would have required each user to be
running their own copy of CLIPS and have the latest version of the knowledge base.
This approach, of course, would have presented considerable maintenance
headaches: y

The current version of our system uses AppleScript, a newly-released scripting
language for the Macintosh. It allows the two applications to communicate almost
invisibly, and also allows the error messages or routing information to be inserted
directly into the form itself. With the error messages contained in a field on the
form, it becomes much easier for the user to correct the associated errors. When the
list of required approvers for a particular form is contained in a field on the form, it
is possible for an electronic mail system to automatically route the form to the
proper people. Perhaps the greatest advantage, however, is that AppleScript can be
used to control applications across an AppleTalk network. This enabled us to put a
single copy of the CLIPS system on a centralized “server” machine, and allow

-5-

remote users to check forms that reside on their own computer, without requiring
them to have their own copy of the knowledge-based system. This capability not
only makes maintenance of the system much easier, but also allows the system to
keep an accurate log of the validation or routing requests it receives. Figure 3 shows
an example fragment of AppleScript code. (Note that this example AppleScript code
is considerably simpler than that actually used in the PEPR system; it's included here
merely as an illustration of how Informed and CLIPS can share data through the use
of AppleScript).

Example script S ————————]

Example script for linking Informed and CLIPS. its
mmc 8/4/93

o] (=] (&)
Bexd S P

L. 4

ol e

functionality or support of new forms) by defining new specialized subclasses that
inherit much of their functionality. The following is the (partial) class definition
for the ARC31 form. Each slot corresponds to a field on the form. Fields that
correspond to “table elements” on the form are represented as “multiple value”
slots in the class definition. To facilitate the sharing of data between the forms
package and the knowledge base, the slot names coincide exactly with the names of
the fields on the form.

(defclass arc31l (is—a FORM)
(concrete)

{slot FORMTYPE)
(slot ADPSIG)
(slot ADPSIGDATE)
(slot AMOUNT (multiple))
(slot APPROPRIATION)
(slot BRANCHSIG)
(slot BRANCHSIGDATE)
(slot BRIEFDESC)
(slot BUYERSINIT)

)

Not all of the data entered onto the form is actually sent to CLIPS. Only the data
from those fields that are referenced in the validation constraints (or routing rules)
is required for the PEPR knowledge base to reason about the form.

Figure 4 shows the class structure of the PEPR knowledge base. The ORG class
and its subclasses are used to represent the organizational structure at Ames.
Instances of these classes (and their corresponding PERSON instances) are used in
the construction of the approval paths. The ERROR and CONSTRAINT classes
(and their subclasses) are used during form validation. Subclasses of the FORM
object areinstantiated and used throughout the knowledge base. The CLUE, PATH,
and HYPOTHESIS classes are used to classify the data on the form prior to
generation of the approval path (these objects are described in more detail in the
gortions that FQ}R}J"\

/ PEPR Class Structure

b .USBR class
(i) casessadded tosupport

non-NASA forms @

_ ESADED-CONSTRATEY
‘ _/

Figure 4 - The PEPR Class Structure

Validation Module

A completed form is considered “valid” if none of the constraints that are
applicable to that form type are violated when applied to the form. When
validation begins, the knowledge base creates an instance of the form being
validated, ©ollects values from all of the constrained fields on the form, and sets its
instance’s slots accordingly.

The following is a simple example of a constraint that reports an error when the
user enters a value in a field that should be left blank: -

([no-py-fields] of shaded-constraint
{(form arc3l)
(fields PY)
(msg "No PY fields should be filled in."))

There are currently seven constraint subclasses, each of which has its own
“apply” method that is executed during validation. In addition to these “error
constraints”, there are three types of “warning constraints” that can generate
messages for the user but do not inhibit subsequent generation of an approval path.
For instance, one page of the ARC31 (not shown) has a table of checkboxes with

which_the user can attemnt to clgssify tﬁe i‘teﬁs heine_ordered._When an avparent

inconsistency between the user’s classification and the system’s classification is
identified, the user is presented with a warning message and can then decide
whether to fix the inconsistency or proceed. Allowing these “soft” constraints
allows the system to point out an apparent discrepancy without unduly limiting the
user’s intent. In the future, the system will support a “user-context” feature, which

will allow constraints to be applicable only for a certain type of user (e.g., the

D — |

Classification Module

If the form is valid, the system invokes the classification module which
determines whether the line items on the PR cause it to fall into any “special”
categories. The system scans the description fields on the PR and compares them
with the appropriate “clue” strings for each category. If a match is found, the system
notes the “hypothesis” associated with that clue and records the level of belief
associated with that clue. PEPR uses a certainty factor calculus derived from that of
the MYCIN system, and can use the presence of a clue to indicate either a positive or
negative belief that the corresponding hypothesis holds (i.e. that the PR falls into the
associated category). This CF calculus dictates how evidence resulting from multiple
clues is to be combined, and allows both for “positive” (supportive) clues and
“negative” (refutive) clues with respect to a particular hypothesis. For example, the
following clue indicates that the word “macintosh”, when found in the BRIEFDESC

field of the PR, indicates that the PR is for ADP equipment with a certainty factor of
an

ver areanization. and an ontional

certain

limit).

Figure 5 shows an example routing slip for the Ames PR form (note that in this
example, the form has already been sent to the first three approvers).

O ARC31 (1.405)

Sentlo

ROUTING SLIP Approval is required from the following 5 people:

Approver

k

Petar Friedland (Artificial Intelligance Reseazch Branch)

Senie Lau (Inferma tion Sciences Divisien)

Don Ehrreich (Aerospace Systems Divectorate)

Barbars Yeage: (Commmunications Opazations Branch)

Rosalind Millez (ADP Plarmning and Analysis Office)

Msii SendTo

Don Ehereich

1 Ferm

Form Onginated By:

_ Michael Compton

Artificial Intelligence Research Branch

=

Recipient Organizalion.
Procurement Control Unit

— 1ef

[

Figure 5 - An Electronic “Routing Slip” for the Ames PR Form

The ‘BUILDCLASS’ Facility

PEPR’s representation of a form consists of a CLIPS class definition that includes
a slot for every field on the form. The “BUILDCLASS” facility takes advantage of
the fact that Informed Manager can export data from a form to a disk file in what is
known as “merge format”. In this format, the names of the fields are written to the
file along with the data they contain. In order to have a new class definition
generated automatically, the knowledge base developer need only export an empty
form in merge format. This permits the BUILDCLASS module to read in the field
names as if they were data; only instead of using this information to fill in the slots
of a previously-defined form instance, it is used to build a “defclass” data structure
that can then be saved in a knowledge base file and used later when a form of that
type is to be validated.

The ‘MAKECT’ Facility

It can also be time-consuming to hand-code the CLIPS objects that comprise the
validation constraints. Just as the BUILDCLASS facility can be used to automatically
construct the class definitions, the MAKECT facility can be used to automatically
construct constraint definitions.

The knowledge base designer uses the MAKECT facility by filling out the form to
be checked with various codes in the fields to be constrained. For example, putting a
single character ‘R’ in a text field will cause a “required” constraint to be generated.
Likewise, putting an ‘S’ in a “shaded” field will generate a constraint indicating that
a field should not be filled in by an end user. Similar codes have been defined for
other fields on the form that can only accept numbers or dates. The knowledge base
designer can also specify whether certain fields should be validated separately or
collectively.

Once the proper codes are entered onto the form and exported to a disk file, the
MAKECT facility reads in the file, parses it, and generates the proper CLIPS source
code to represent the constraints.

Current Status

The PEPR system is currently being evaluated with respect to its usability in a
production environment at NASA Ames. The knowledge base for the ARC31 form
is being refined to conform to recent modifications in the Ames procurement
processes; and later this year the system will be tested by-real users within the
Aerospace Systems Directorate.

With the upcoming release of Apple’s Open Collaboration Environment (AOCE,
due in the fall of 1993), the approval paths generated by the PEPR system will be
used to directly control the routing of the forms through the approval process.
Because AOCE also supports digital signatures and system-level access to electronic
mail (among other services), the PEPR system will be functioning in a true
distributed ‘workflow environment.

Future Plans
There are three main areas in which we hope to be able to improve the PEPR
system’s functionality.

-12-

First, we want to determine whether machine learning techniques can be used to
improve the classification module by automatically acquiring new knowledge about
how to classify line items on a PR with respect to the special approvals they require.
Currently these classification clues and hypotheses are hand-coded, and an
automated approach to acquiring this knowledge could help improve the system’s
classification capability with minimal manual maintenance. We are also studying
the issues involved with acquiring some types of classification heuristics directly
from the end users of the system.

Second, we want to reduce the system’s dependence on its internal data base of
approvers and organizations. This type of data is much better suited to a more
conventional data base that can be maintained externally to the knowledge base.

Third, we are studying ways by which the knowledge system can help the user
correct errors that are identified during validation. This would involve
augmenting the system’s representation of error types with repair strategies that can
automatically be pursued if the user indicates that he or she wants help with
correcting the problems reported by the PEPR validation module.

We also are interested in applying the PEPR architecture to other types of
T i T e fis et e —
| =

{

References

[1] Compton, M., Stewart, H., Tabibzadeh, S., Hastings, B. 1992 Intelligent purchase
request system, NASA Ames Research Center Tech. Rep. FIA-92-07

[2] Shortliffe, E. H. 1976 Computer-based medical consultations: MYCIN. New York:
American Elsevier.

[3] Hermens, L.A., Schlimmer, J.C. 1993 Applying machine learning to electronic
form filling. Proceedings of the SPIE Applications of Al: Machine Vision and
Robotics

-14-

